Bernoulli’s principle describes the relationship between the flow velocity of a fluid and its pressure. An increase in velocity leads to a reduction in static pressure in a flowing fluid, and vice versa. The total pressure of the fluid remains constant. Bernoulli’s equation is also known as the principle of conservation of energy of the flow.
The HM 150.07 experimental unit is used to demonstrate Bernoulli’s principle by determining the pressures in a Venturi nozzle. The experimental unit includes a pipe section with a transparent Venturi nozzle and a movable Pitot tube for measuring the total pressure. The Pitot tube is located within the Venturi nozzle, where it is displaced axially. The position of the Pitot tube can be observed through the Venturi nozzle’s transparent front panel. The Venturi nozzle is equipped with pressure measuring points to determine the static pressures. The pressures are displayed on the six tube manometers. The total pressure is measured by the Pitot tube and displayed on another single tube manometer.
The experimental unit is positioned easily and securely on the work surface of the HM 150 base module. The water is supplied and the flow rate measured by HM 150. Alternatively, the experimental unit can be operated by the laboratory supply.
In order to perform a virtual analysis of flow behaviour, CFD simulations are often used in practice. Such simulations allow, for example, flow visualisations in areas that cannot be visualised experimentally. In the GUNT Media Center, flow visualisations based on CFD calculations are available online. There are also multimedia teaching materials including E-Learning courses on basic knowledge and calculations. Videos show a complete experiment with preparation, execution and evaluation. Worksheets with solutions supplement the teaching material.