



# LABORATORY PLANNING GUIDE

# L55 v2 Unit Operations Laboratory

| <u>Content</u>                                     |   |
|----------------------------------------------------|---|
| Covered subjects according to the curriculum       | 2 |
| Main concept                                       | 3 |
| Initial training provided for laboratory personnel | 4 |
| Requirements / Utilities                           | 4 |
| Schedule of requirements                           | 5 |
| Laboratory drawing                                 | 5 |



G.U.N.T. Gerätebau GmbH, Hanskampring 15-17, 22885 Barsbüttel, Germany Phone: +49 40 670854-0, E-mail: <u>sales@gunt.de</u>, Web: <u>www.gunt.de</u>



#### Covered subjects according to the curriculum

Major topics of learning content:

- investigation of diffusion in liquids and gases
- fundamentals of diffusion: Fick's law
- derivation of the calculation formula for the diffusion coefficients for the given experimental conditions
- determination of the diffusion coefficient for the mass transport in gas and in liquid
- investigation of the absorption process during the separation of oxygen from an air flow in a falling film column
- determination of the mass transfer coefficient
- continuous and discontinuous rectification with packed and sieve plate column
  - \* in continuous mode
  - \* in discontinuous mode
  - \* in vacuum mode
  - \* with different reflux ratios
  - \* with different numbers of plates and inlet heights for the feed flow (sieve plate column)
- fundamentals of solid-liquid extraction
- demonstration of solid-liquid extraction as a continuous and discontinuous process
- investigation of 1-, 2- and 3-stage processes
- influence of solvent flow rate and temperature on the extraction process
- influence of extraction material feed rate and extractor revolving speed on the extraction process
- transition of a component from a two-component liquid mixture into a solvent by extraction
- enrichment of transition component in extract by distillation
- evaluation of separation processes via concentration measurement and mass balances
- influence of different experimental options on separation processes
- thermodynamic principles of the wet cooling tower
  - \* changes of state of the air in the h-x diagram
  - \* determination of the cooling capacity
- investigation of the absorption process when separating gas mixtures in a packed column
  - \* determination of pressure losses in the column
  - \* representation of the absorption process in an operating diagram
  - \* investigation of the variables influencing the effectiveness of absorption
- fundamentals of filtration: Darcy's equation
- depth filtration with different bulk solids and suspensions
- cake filtration with different suspensions
- fundamental principle of cooling crystallisation
- investigation of the factors influencing crystal growth: oversaturation and saturation time
- fundamental principle of adsorption and desorption
- investigation of the variables influencing adsorption and desorption
  - \* air flow rates
  - \* air humidity and temperature
  - \* bed height of adsorbent
  - \* depiction of the processes in a h-ω diagram
- fundamental principle of film evaporation for increasing the concentration of temperaturesensitive solutions
  - \* investigation of the variables influencing the solid concentration in the solution
  - \* influence of pressure and feed flow rate on the separating process



- \* influence of flow rate and pressure of the heating steam on the separating process
- \* investigation of the variables influencing the energy efficiency of the process
- \* energy balances at heat exchangers
- \* system cleaning while installed
- multivariable control: vacuum degassing
- coupled level and pressure control with various controller types
- multivariable control: stirred tank
  - level control with
    - \* PI controller
    - \* disturbance feedforward control
- temperature control
  - \* with two-point controller
  - \* with three-point controller (split range)
  - \* with override control
  - \* via motorised valve with position feedback
- cascade control
  - \* level flow rate
  - \* temperature flow rate

#### Main concept

The laboratory is designed for accommodation of 24 students + 2 laboratory staff:

- 2 4 students form a team and work together at a workstation / training system
- 14 different workstations
- All workstations are floor standing or on a laboratory table
- 7 of the workstations are equipped with a PC
- Each workstation is equipped with a manual containing technical information, basic theory, experiment instructions, evaluation help and safety advice.
- Student teams are scheduled to change workstations from lab session to lab session in order to perform the entire range of experiments within the course duration.
- Average time per experiment: 90 to 120 minutes.

2 workstations for laboratory staff (with PC and internet access)

1 printer for common use

1 cupboard for small parts, consumables, tools, paper etc.



#### Initial training provided for laboratory personnel

Trainer: Specialized engineer of G.U.N.T. Gerätebau GmbH, Germany. To be conducted immediately after installation and commissioning of the equipment. General topics to be covered for any of the educational systems:

- Basic familiarization with the system.
- Functions and components.
- Overall system configuration aspects.
- Start-up and operational aspects.
- Conduction experiments, including evaluation and calculation.
- Using the system with and without the software (where applicable).
- Trouble shooting and maintenance aspects.
- Hands-on, practical familiarization aspects.
- Seminar participants with the delivered system.
- Details of the manuals.
- Safe operation and preventive maintenance.

#### **Requirements / Utilities**

Power supply:

- 230 V / 50 Hz / 1 phase at least 20 power sockets
- 400 V / 50 Hz / 3 phases at least 2 power socket

Water:

- 8 x cold water
- 8 x drain

Others:

- Compressed air
- CO<sub>2</sub>

Laboratory computer network:

- 2 internet connections for staff
- 7 internet connections for students

Location:

- Laboratory space min 96 m<sup>2</sup>
- This laboratory could be installed on any floor (e.g. ground floor or 1<sup>st</sup> floor)



## Schedule of requirements

| Item No.  | Description                                     | Quantity |
|-----------|-------------------------------------------------|----------|
| ltem 1    | Diffusion in liquids and gases                  | 1        |
| ltem 2    | Falling film absorption                         | 1        |
| Item 3    | Continuous rectification                        | 1        |
| ltem 4    | Solid-liquid extraction                         | 1        |
| ltem 5    | Liquid-liquid extraction                        | 1        |
| ltem 6    | Wet cooling tower                               | 1        |
| ltem 7    | Gas absorption                                  | 1        |
| ltem 8    | Cake and depth filtration                       | 1        |
| ltem 8.1  | Precision balance 10100g / 0,1g                 | 1        |
| ltem 9    | Cooling crystallisation                         | 1        |
| ltem 10   | Adsorptive air drying                           | 1        |
| ltem 11   | Rising film evaporation                         | 1        |
| ltem 11.1 | Electrical steam generator 10kW                 | 1        |
| ltem 12   | Multivariable control: vacuum degassing         | 1        |
| Item 13   | Multivariable control: stirred tank             | 1        |
| Item 14   | Control of 4 variables from process engineering | 1        |

### Laboratory drawing

