

LABORATORY PLANNING GUIDE

L62 v2 Advanced Renewable Energies Laboratory

<u>Content</u>

Covered subjects according to the curriculum	2
Main concept	3
Initial training provided for laboratory personnel	4
Requirements / Utilities	4
Schedule of requirements	5

G.U.N.T. Gerätebau GmbH, Hanskampring 15-17, 22885 Barsbüttel, Germany Phone: +49 40 670854-0, E-mail: <u>sales@gunt.de</u>, Web: <u>www.gunt.de</u>

Covered subjects according to the curriculum

Major topics of learning content:

- familiarisation with the functions of the flat collector and the solar circuit
 - * relationship between flow and net power
 - * relationship between temperature difference (collector/environment) and collector efficiency
- solar module measurements
 - * physical behaviour of solar modules under a variety of effects: illuminance, temperature and shading
 - * familiarisation with key parameters:
 - short-circuit current, open-circuit voltage, current and voltage at maximum output
 - * relationship between module tilt, illuminance, short-circuit current and electrical output
 - * connection types for the modules: series and parallel connection
 - * effect of bypass diodes
- application aspects of electrical components for photovoltaic systems
 - * efficiency and dynamic behaviour of system components in grid-connected and stand-alone operation
 - * function of MPP tracker, inverters and charge controllers
 - conversion of kinetic wind energy into electrical energy
 - * function and design of an stand-alone system with a wind power plant
 - * determining the power coefficient as a function of tip speed ratio
 - * energy balance in a wind power plant
 - * determining the efficiency of a wind power plant
 - * design and function of a wind turbine in stand-alone operation
 - * energy balance of a wind turbine under real wind conditions
- determining characteristic variables of a centrifugal pump at various speeds: intake and delivery pressure, delivery height, hydraulic output, mechanical output, efficiency
- determining characteristic variables of a Pelton and a Francis turbine
 - * measuring torque and speed
 - * determining efficiency and mechanical output of the turbine
 - * influence of the nozzle cross-section on the power output of a Pelton Turbine
 - * influence of the guide vane position on the power output of a Francis Turbine
- design, operation and key components of a heat pump or refrigeration system
- representation of the thermodynamic cycle in the log p-h diagram
- biotechnical production of ethanol
 - * familiarization with the necessary individual steps and system components
 - * gelatinisation by steam injection
 - * liquefaction by use of alpha-amylase
 - * saccharification by use of gluco-amylase
 - * fermentation: conversion of sugar by yeast cultures under anaerobic conditions
 - * distillation: separation of ethanol from the mash

- two-stage biogas plant with continuous or discontinuous operation
 - * influence of the following parameters on the biogas generation: temperature, substrate, volumetric loading and pH value
 - * influence of the operation mode on the biogas yield
 - -> single stage or dual stage
 - -> with and without post-fermentation
 - -> continuous and discontinuous
 - * determining the following parameters depending on the operating conditions: biogas yield, biogas flow rate and biogas quality
- conversion of chemical energy into electrical and thermal energy
- production of biodiesel from vegetable oil
 - * fundamentals of chemical transesterification
 - * influence of retention time and temperature
- function and design of a fuel cell system
 - * relationships of fuel cell operating parameters
 - * effects on the electrical performance of fuel cells
- demonstration of the operation of a geothermal probe with heat pipe principle
 - * investigation of radial and vertical temperature profiles
 - * variation of the thermal load
 - * variation of the quantity of working medium contained
- demonstration of the operation of a 2-well system for using geothermal energy
 - * open circuit for use of geothermal energy
 - * pumping behaviour of an open circuit
 - * investigation of radial and vertical temperature profiles
- familiarisation with operating principle of a wave power plant
 - * understanding of the energy generation from wave motion
 - * measurement of wave motions
 - * familiarisation with design and operation of a Wells turbine

Main concept

The laboratory is designed for accommodation of 24 students + 2 laboratory staff:

- 2 4 students form a team and work together at a workstation / training system
- 12 different workstations
- All workstations are floor standing
- 9 of the workstations are equipped with a PC
- Each workstation is equipped with a manual containing technical information, basic theory, experiment instructions, evaluation help and safety advice.
- Student teams are scheduled to change workstations from lab session to lab session in order to perform the entire range of experiments within the course duration.
- Average time per experiment: 90 to 120 minutes.
- 2 workstations for laboratory staff (with PC and internet access)
- 1 printer for common use
- 1 cupboard for small parts, consumables, tools, paper etc.

Initial training provided for laboratory personnel

Trainer: Specialized engineer of G.U.N.T. Gerätebau GmbH, Germany.

To be conducted immediately after installation and commissioning of the equipment.

General topics to be covered for any of the educational systems:

- Basic familiarization with the system.
- Functions and components.
- Overall system configuration aspects.
- Start-up and operational aspects.
- Conduction experiments, including evaluation and calculation.
- Using the system with and without the software (where applicable).
- Trouble shooting and maintenance aspects.
- Hands-on, practical familiarization aspects.
- Seminar participants with the delivered system.
- Details of the manuals.
- Safe operation and preventive maintenance.

Requirements / Utilities

Power supply:

- 230 V / 50 Hz / 1 phase at least 20 power sockets
- 400 V / 50 Hz / 3 phases at least 5 power sockets up to 32 A

Water:

- 5 x cold water
- 1 x hot water
- 5 x drain

Others:

- compressed air
- CO₂
- exit air

Laboratory computer network:

- 2 internet connections for staff
- 7 internet connections for students

Location:

- Laboratory space min 150 m²
- This laboratory should be installed on the ground floor

Schedule of requirements

Item No.	Description	Quantity
Item 1	Domestic water heating with flat collector	1 pcs.
Item 1.1	Artificial light source	1 pcs.
Item 2	Solar module measurements	1 pcs.
Item 2.1	Using photovoltaics: grid connected or stand-alone	1 pcs.
Item 2.2	Solar cell measurements	1 pcs.
Item 3	Energy conversion in a wind power plant	1 pcs.
Item 3.1	Wind power plant	1 pcs.
Item 4	Characteristic variables of hydraulic turbomachines	1 pcs.
Item 4.1	Pelton turbine	1 pcs.
Item 4.2	Francis turbine	1 pcs.
Item 5	Heat pump for cooling and heating operation	1 pcs.
Item 6	Biotechnical production of ethanol	1 pcs.
Item 6.1	Electrical steam generator 10kW	1 pcs.
Item 7	Biogas plant	1 pcs.
Item 8	Biodiesel plant	1 pcs.
Item 9	Fuel cell system	1 pcs.
Item 10	Geothermal probe with heatpipe principle	1 pcs.
Item 11	Geothermal energy with 2-well system	1 pcs.
Item 12	Wave energy converter	1 pcs.