



### LABORATORY PLANNING GUIDE

### **L45 v2 Fluid Machinery Laboratory**

#### Content

| Covered subjects according to the curriculum       |     |
|----------------------------------------------------|-----|
| Main concept                                       | . 3 |
| Initial training provided for laboratory personnel | . 3 |
| Requirements / Utilities                           | . 4 |
| Schodula of requirements                           | 1   |







#### Covered subjects according to the curriculum

#### Major topics of learning content:

- investigation of an axial impulse turbine and of a of a reaction turbine with air flow
  - \* determination of power as a function of volumetric flow rate, pressure and speed
  - \* recording of torque characteristic
  - \* determination of the turbine efficiency
  - \* partial pressurisation (nozzle group circuit)
- operating behaviour and characteristic variables of a radial fan and of an axial fan
  - \* recording the fan characteristic (differential pressure as a function of the flow rate)
  - \* effect of the rotor speed on the pressure
  - \* effect of the rotor speed on the flow rate
  - \* effect of different rotor shapes on the fan characteristic and efficiency
  - \* determination of hydraulical power output and efficiencies
- pressure losses in pipes and pipe elbows
- flow in convergent/divergent nozzles
- supersonic flow in the de Laval nozzle
- determine the speed of sound in air
- compare calculation methods for incompressible and compressible flow
- use complete continuity equation
- determine mass flow using nozzle and volumetric flow rate using orifice
- record calibration curve for orifice
- record fan characteristic curve at different mass flows and speeds
- · operating behaviour of centrifugal pumps
  - \* single pump operation
  - \* series pump operation
  - \* parallel pump operation
- principle of operation of a piston pump and of a gear pump
  - \* recording of pump characteristics
  - \* pressure curves of delivery pressure and cylinder pressure
  - \* influence of pulsation damping
  - \* p-V diagram
  - \* determination of efficiencies
- principle of operation of an axial, a reaction, a Pelton and an action turbine
  - \* relationship between torque and speed
  - \* efficiency dependent on speed
  - \* flow rate dependent on speed
  - \* hydraulic power and mechanical power depending on speed
- operating behaviour and characteristic variables of a radial compressor
  - \* recording of the compressor curve for both stages
  - \* effect of the rotor speed on the pressure
  - \* effect of the rotor speed on the flow rate
  - \* distribution of stage pressure ratios
  - \* effect of compression on the temperature increase
  - \* determination of hydraulical power output and efficiencies
- familiarisation with the basic principle of a multi-head diaphragm pump
- familiarisation with the basic principle of a rotary vane pump
- familiarisation with the occurrence of cavitation
- observation of cavitation effect in pumps



#### Main concept

The laboratory is designed for accommodation of 24 students + 2 laboratory staff:

- 2 4 students form a team and work together at a workstation / training system
- 17 different workstations
- All workstations are floor standing or on a laboratory table
- 11 workstations are equipped with a PC
- Each workstation is equipped with a manual containing technical information, basic theory, experiment instructions, evaluation help and safety advice.
- Student teams are scheduled to change workstations from lab session to lab session in order to perform the entire range of experiments within the course duration.
- Average time per experiment: 90 to 120 minutes.

2 workstations for laboratory staff (with PC and internet access)

1 printer for common use

1 cupboard for small parts, consumables, tools, paper etc.

#### Initial training provided for laboratory personnel

Trainer: Specialized engineer of G.U.N.T. Gerätebau GmbH, Germany.

To be conducted immediately after installation and commissioning of the equipment.

General topics to be covered for any of the educational systems:

- Basic familiarization with the system.
- Functions and components.
- Overall system configuration aspects.
- Start-up and operational aspects.
- Conduction experiments, including evaluation and calculation.
- Using the system with and without the software (where applicable).
- Trouble shooting and maintenance aspects.
- Hands-on, practical familiarization aspects.
- Seminar participants with the delivered system.
- Details of the manuals.
- Safe operation and preventive maintenance.



#### **Requirements / Utilities**

#### Power supply:

• 230 V / 50 Hz / 1 phase – at least 30 power sockets

#### Water:

- 2 x cold water
- 2 x drain

#### Others:

Compressed air

#### Laboratory computer network:

- 2 internet connections for staff
- 11 internet connections for students

#### Location:

- Laboratory space min 72 m<sup>2</sup>
- This laboratory could be installed on any floor (e.g. ground floor or 1<sup>st</sup> floor)

#### Schedule of requirements

| Item No.         | Description                          | Quantity |
|------------------|--------------------------------------|----------|
| Item 1           | Air-operated impulse turbine         | 1 pcs.   |
| Item 2           | Reaction turbine                     | 1 pcs.   |
| Item 3           | Experiments with a radial fan        | 1 pcs.   |
| Item 4           | Experiments with an axial fan        | 1 pcs.   |
| Item 5           | Experiments with a centrifugal pump  | 1 pcs.   |
| Item 6           | Series and parallel connected pumps  | 1 pcs.   |
| Item 7           | Experiments with a piston pump       | 1 pcs.   |
| Item 8           | Experiments with a gear pump         | 1 pcs.   |
| Item 9           | Experiments with an axial turbine    | 1 pcs.   |
| Item 10          | Experiments with a reaction turbine  | 1 pcs.   |
| Item 11          | Experiments with a pelton turbine    | 1 pcs.   |
| For Item 10, 11, |                                      |          |
| 12               | Base unit for turbines               | 3 pcs.   |
| Item 12          | Experiments with an action turbine   | 1 pcs.   |
| Item 13          | Experiments with a radial compressor | 1 pcs.   |
| Item 14          | Multi-head diaphragm pump            | 1 pcs.   |
| Item 15          | Rotary vane vacuum pump              | 1 pcs.   |
| Item 16          | Cavitation in pumps                  | 1 pcs.   |
| Item 17          | Flow of compressible fluids          | 1 pcs.   |